11 research outputs found

    Weakly supervised coupled networks for visual sentiment analysis

    Get PDF
    Automatic assessment of sentiment from visual content has gained considerable attention with the increasing tendency of expressing opinions on-line. In this paper, we solve the problem of visual sentiment analysis using the high-level abstraction in the recognition process. Existing methods based on convolutional neural networks learn sentiment representations from the holistic image appearance. However, different image regions can have a different influence on the intended expression. This paper presents a weakly supervised coupled convolutional network with two branches to leverage the localized information. The first branch detects a sentiment specific soft map by training a fully convolutional network with the cross spatial pooling strategy, which only requires image-level labels, thereby significantly reducing the annotation burden. The second branch utilizes both the holistic and localized information by coupling the sentiment map with deep features for robust classification. We integrate the sentiment detection and classification branches into a unified deep framework and optimize the network in an end-to-end manner. Extensive experiments on six benchmark datasets demonstrate that the proposed method performs favorably against the state-ofthe- art methods for visual sentiment analysis

    Hierarchical layout-aware graph convolutional network for unified aesthetics assessment

    Get PDF
    Learning computational models of image aesthetics can have a substantial impact on visual art and graphic design. Although automatic image aesthetics assessment is a challenging topic by its subjective nature, psychological studies have confirmed a strong correlation between image layouts and perceived image quality. While previous state-of-the-art methods attempt to learn holistic information using deep Convolutional Neural Networks (CNNs), our approach is motivated by the fact that Graph Convolutional Network (GCN) architecture is conceivably more suited for modeling complex relations among image regions than vanilla convolutional layers. Specifically, we present a Hierarchical Layout-Aware Graph Convolutional Network (HLA-GCN) to capture layout information. It is a dedicated double-subnet neural network consisting of two LA-GCN modules. The first LA-GCN module constructs an aesthetics-related graph in the coordinate space and performs reasoning over spatial nodes. The second LA-GCN module performs graph reasoning after aggregating significant regions in a latent space. The model output is a hierarchical representation with layout-aware features from both spatial and aggregated nodes for unified aesthetics assessment. Extensive evaluations show that our proposed model outperforms the state-of-the-art on the AVA and AADB datasets across three different tasks. The code is available at http://github.com/days1011/HLAGCN

    Retrieving and classifying affective Images via deep metric learning

    Get PDF
    Affective image understanding has been extensively studied in the last decade since more and more users express emotion via visual contents. While current algorithms based on convolutional neural networks aim to distinguish emotional categories in a discrete label space, the task is inherently ambiguous. This is mainly because emotional labels with the same polarity (i.e., positive or negative) are highly related, which is different from concrete object concepts such as cat, dog and bird. To the best of our knowledge, few methods focus on leveraging such characteristic of emotions for affective image understanding. In this work, we address the problem of understanding affective images via deep metric learning and propose a multi-task deep framework to optimize both retrieval and classification goals. We propose the sentiment constraints adapted from the triplet constraints, which are able to explore the hierarchical relation of emotion labels. We further exploit the sentiment vector as an effective representation to distinguish affective images utilizing the texture representation derived from convolutional layers. Extensive evaluations on four widely-used affective datasets, i.e., Flickr and Instagram, IAPSa, Art Photo, and Abstract Paintings, demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods on both affective image retrieval and classification task

    APSE: Attention-aware polarity-sensitive embedding for emotion-based image retrieval

    Get PDF
    With the popularity of social media, an increasing number of people are accustomed to expressing their feelings and emotions online using images and videos. An emotion-based image retrieval (EBIR) system is useful for obtaining visual contents with desired emotions from a massive repository. Existing EBIR methods mainly focus on modeling the global characteristics of visual content without considering the crucial role of informative regions of interest in conveying emotions. Further, they ignore the hierarchical relationships between coarse polarities and fine categories of emotions. In this paper, we design an attention-aware polarity-sensitive embedding (APSE) network to address these issues. First, we develop a hierarchical attention mechanism to automatically discover and model the informative regions of interest. Specifically, both polarity-and emotion-specific attended representations are aggregated for discriminative feature embedding. Second, we propose a generated emotion-pair (GEP) loss to simultaneously consider the inter-and intra-polarity relationships of the emotion labels. Moreover, we adaptively generate negative examples of different hard levels in the feature space guided by the attention module to further improve the performance of feature embedding. Extensive experiments on four popular benchmark datasets demonstrate that the proposed APSE method outperforms the state-of-the-art EBIR approaches by a large margin

    WSCNet: Weakly Supervised Coupled Networks for Visual Sentiment Classification and Detection

    Get PDF
    Automatic assessment of sentiment from visual content has gained considerable attention with the increasing tendency of expressing opinions online. In this paper, we solve the problem of visual sentiment analysis, which is challenging due to the high-level abstraction in the recognition process. Existing methods based on convolutional neural networks learn sentiment representations from the holistic image, despite the fact that different image regions can have different influence on the evoked sentiment. In this paper, we introduce a weakly supervised coupled convolutional network (WSCNet). Our method is dedicated to automatically selecting relevant soft proposals from weak annotations (e.g., global image labels), thereby significantly reducing the annotation burden, and encompasses the following contributions. First, WSCNet detects a sentiment-specific soft map by training a fully convolutional network with the cross spatial pooling strategy in the detection branch. Second, both the holistic and localized information are utilized by coupling the sentiment map with deep features for robust representation in the classification branch. We integrate the sentiment detection and classification branches into a unified deep framework, and optimize the network in an end-to-end way. Through this joint learning strategy, weakly supervised sentiment classification and detection benefit each other. Extensive experiments demonstrate that the proposed WSCNet outperforms the state-of-the-art results on seven benchmark datasets
    corecore